27 Maret 2010

Jaringan Internet melalui Kabel Listrik

Jaringan Internet melalui Kabel Listrik atau Broadband over Power Line (BPL) - Jauh sebelum kabel telepon tetap (fixed line), kabel listrik (power line) telah lebih dulu mengalir ke rumah-rumah dan gedung-gedung perkantoran. Namun, justru kabel telepon tetap yang terlebih dulu digunakan sebagai jalan masuk koneksi internet (last mile) ke perumahan dan perkantoran.

Padahal dengan memanfaatkan kabel listrik sebagai last mile, tentulah penetrasi internet berpita lebar (broadband) akan jauh lebih efektif dan merata. Dengan teknologi Broadband over Power Line (BPL), siapapun tinggal mencolokkan PC ke sembarang stop kontak (electrical outlet), dan secara instan dapat segera menikmati internet berkecepatan tinggi . Dengan menggabungkan prinsip-prinsip teknologi radio, wireless networking dan modem, para pengembang bisa menciptakan cara untuk mengirimkan data melalui kabel listrik ke perumahan dan perkantoran dengan kecepatan berkisar antara 500 Kbps hingga 3 Mbps (setara dengan kecepatan DSL).

Dengan sedikit modifikasi pada kabel listrik, pengembang BPL bisa bekerja sama dengan perusahaan penyedia listrik dan ISP (Internet Service Provider) untuk mewujudkan koneksi broadband kepada setiap pelanggan. Pada titik ini, usulan untuk menjadikan kabel listrik sebagai last mile menawarkan dua jenis layanan, yaitu:
- menghubungkan perangkat-perangkat listrik didalam rumah atau kantor.
- akses BPL akan membawa koneksi broadband menggunakan kabel, dan memungkinkan perusahaan penyedia listrik untuk mengontrol sistem listrik didalam rumah atau kantor.

Transmisi data berkecepatan tinggi menggunakan kabel listrik, memunculkan potensi untuk menghubungkan semua perangkat listrik yang tercolok atau terhubung didalam rumah. Bayangkan jika perangkat-perangkat listrik dirumah anda memiliki fasilitas auto power atau timer, seperti alarm rumah, sakelar lampu, mesin pembuat kopi atau bahkan mesin cuci bisa berkomunikasi satu sama lain melalui sebuah koneksi internet berkecepatan tinggi. Pagi hari akan terlihat benar-benar berbeda.



Metode Lawas

Biasanya, ISP-ISP besar menyediakan jalur serat optik dari perusahaan telekomunikasi untuk membawa data dari dan ke internet, atau mungkin ke media lain (telepon, DSL atau TV kabel) kerumah anda.

Gagasan untuk menggunakan kabel listrik AC (alternating current, arus bolak-balik) untuk mentransfer data sendiri bukanlah hal baru. Dengan membundel energi radio-frequency (RF) pada jalur yang sama dengan arus listrik, data dapat ditransmisikan tanpa perlu menggunakan jalur data terpisah. Hal ini bisa terjadi karena arus listrik dan getaran RF memiliki frekuensi yang berbeda. Keduanya tidak saling menginterferensi.

Perusahaan penyedia listrik telah menggunakan teknologi ini selama bertahun-tahun untuk memonitor kinerja sistem tenaga listrik, dikenal dengan SCADA. Saat ini bahkan telah ada solusi jaringan yang mentransfer data menggunakan kabel listrik untuk perumahan dan perkantoran.

Para pengembang teknologi BPL bekerja sama dengan perusahaan penyediaan listrik di AS tengah bekerja untuk mewujudkan BPL ini. Terdapat beberapa pendekatan yang berbeda untuk mengatasi rintangan yang muncul ketika mentransmisi data melalui kabel listrik.

Menghindari Interferensi

Seperti perusahaan telekomunikasi, perusahaan penyedia listrik juga memiliki kabel yang terbentang di seluruh dunia. Perbedaannya, perusahaan listrik memiliki jaringan kabel listrik yang menjangkau lebih banyak tempat ketimbang serat optik yang dimiliki perusahaan telekomunikasi. Kenyataan ini jelas menjadikan kabel listrik sebagai kendaraan yang paling berpotensi untuk menyediakan koneksi internet ke tempat-tempat yang belum terjangkau oleh kabel serat optik.

Kabel merupakan salah satu komponen dari jaringan yang dimiliki pleh perusahaan penyedia listrik. Selain kabel, jaringan listrik menggunakan generator, stasiun kecil atau gardu, transformer atau trafo dan perangkat penyambung lainnya untuk membawa listrik dari pembangkit listrik menuju rumah atau kantor.

Ketika listrik meninggalkan pembangkit, dia bergerak menuju gardu, baru kemudian disitribusikan ke kabel-kabel transmisi bertegangan tinggi. Ketika digunakan untuk mentransmisi koneksi broadband, kabel bertegangan tinggi inilah yang menjadi penghalang pertama. Listrik yang mengalir pada kabel transmisi ini dapat bertegangan tinggi sekitar 150 kV atau bahkan bertegangan ekstra tinggi diatas 500 kV. Besarnya tegangan ini sangat tidak cocok untuk mentransmisi data.

Seperti telah dijelaskan diatas, arus listrik dan RF menggunakan frekuensi yang berbeda. Agar data dapat ditransmisikan secara jernih dari satu titik ke titik lainnya, maka dibutuhkan jalur yang mendukung spektrum radio untuk bergetar tanpa terinterferensi oleh sumber lain. Ratusan ribu volt listrik tersebut tidak bergetar di frekuensi yang tetap. Arus listrik dalam jumlah tersebut melibas semua spektrum, dan bila bergerak di spektrum yang digunkan RF, dapat dipastikan sinyal transmisi data akan drop atau bahkan hancur berantakan.

BPL mem-bypass masalah ini dengan menghindari penggunaan bersama kabel bertegangan tinggi. Sistem ini menurunkan tegangan data menjadi 7200 volt, atau sama dengan tegangan listrik yang dialirkan pada kebel bertegangan menengah.

semoga bermanfaat,

ditulis ulang oleh: HaGe dari tabloid PC Mild edisi 25/2009*17-30 desember 2009

04 Maret 2009

Penangkal petir


Sebuah penangkal petir

Penangkal petir adalah rangkaian jalur yang difungsikan sebagai jalan bagi petir menuju ke permukaan bumi, tanpa merusak benda-benda yang dilewatinya. Ada 3 bagian utama pada penangkal petir:

  1. Batang penangkal petir
  2. Kabel konduktor
  3. Tempat pembumian

Batang penangkal petir

Batang penangkal petir berupa batang tembaga yang ujungnya runcing. Dibuat runcing karena muatan listrik mempunyai sifat mudah berkumpul dan lepas pada ujung logam yang runcing. Dengan demikian dapat memperlancar proses tarik menarik dengan muatan listrik yang ada di awan. Batang runcing ini dipasang pada bagian puncak suatu bangunan.

Baca selanjutnya...


Medan Listrik

Medan listrik adalah efek yang ditimbulkan oleh keberadaan muatan listrik, seperti elektron, ion, atau proton, dalam ruangan yang di sekitarnya. Medan listrik memiliki satuan N/C atau dibaca newton/coulomb. Medan listrik umumnya dipelajari dalam fisika dan bidang-bidang terkait. Secara tak langsung bidang elektronika telah memanfaatkan medan listrik dalam kawat konduktor (kabel).

Asal medan listrik

Rumus matematika untuk medan listrik dapat diturunkan melalui Hukum Coulomb, yaitu gaya antara dua titik muatan:

\mathbf{F} = \frac{q_1 q_2}{\left|\mathbf{r}\right|^2}\mathbf{\hat r}.

Menurut persamaan ini, gaya pada salah satu titik muatan berbanding lurus dengan besar muatannya. Medan listrik didefinisikan sebagai suatu konstan perbandingan antara muatan dan gaya[1]:

\mathbf{F} = q\mathbf{E}
\mathbf{E} = \frac{1}{4 \pi \epsilon_0}\ \frac{q} {\left|\mathbf{r}\right|^2}\mathbf{\hat r}

Maka, medan listrik bergantung pada posisi. Suatu medan, merupakan sebuah vektor yang bergantung pada vektor lainnya. Medan listrik dapat dianggap sebagai gradien dari potensial listrik. Jika beberapa muatan yang disebarkan menghasiklan potensial listrik, gradien potensial listrik dapat ditentukan.

Konstanta k

Dalam rumus listrik sering ditemui konstanta k sebagai ganti dari \!1/4\pi\epsilon_0 (dalam tulisan ini tetap digunakan yang terakhir), di mana konstanta k\! tersebut bernilai [2]:

\! k = \frac{1}{4\pi\epsilon_0} \approx 8.99 \times 10^9 N m2 C-2

yang kerap disebut konstanta kesetaraan gaya listrik [3].

Menghitung medan listrik


Baca selanjutnya...

listrik

Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut:

  • Listrik adalah kondisi dari partikel subatomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya.
  • Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif.

Bersama dengan magnetisme, listrik membentuk interaksi fundamental yang dikenal sebagai elektromagnetisme. Listrik memungkinkan terjadinya banyak fenomena fisika yang dikenal luas, seperti petir, medan listrik, dan arus listrik. Listrik digunakan dengan luas di dalam aplikasi-aplikasi industri seperti elektronik dan tenaga listrik.

Sifat-sifat listrik

Listrik memberi kenaikan terhadap 4 gaya dasar alami, dan sifatnya yang tetap dalam benda yang dapat diukur. Dalam kasus ini, frase "jumlah listrik" digunakan juga dengan frase "muatan listrik" dan juga "jumlah muatan". Ada 2 jenis muatan listrik: positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik.

Baca selanjutnya...

Metode Gauss seidel

Metode Gauss-Seidel

Metode Gauss-Seidel digunakan untuk menyelesaikan sistem persamaan linear (SPL) berukuran besar dan proporsi koefisien nolnya besar, seperti sistem-sistem yang banyak ditemukan dalam sistem persamaan diferensial. Metode iterasi Gauss-Seidel dikembangkan dari gagasan metode iterasi pada solusi persamaan tak linier.

Teknik iterasi jarang digunakan untuk menyelesaikan SPL berukuran kecil karena metode-metode langsung seperti metode eliminasi Gauss lebih efisien daripada metode iteratif. Akan tetapi, untuk SPL berukuran besar dengan persentase elemen nol pada matriks koefisien besar, teknik iterasi lebih efisien daripada metode langsung dalam hal penggunaan memori komputer maupun waktu komputasi. Dengan metode iterasi Gauss-Seidel sesatan pembulatan dapat diperkecil karena dapat meneruskan iterasi sampai solusinya seteliti mungkin sesuai dengan batas sesatan yang diperbolehkan.

baca selanjutnya..

Macam-macam daya listrik

Pada umumnya sistem tenaga listrik terdiri dari tiga elemen yaitu pusat pembangkit, transmisi dan pusat beban. Seperti yang telah diketahui daya listrik dibagi dalam tiga macam daya sebagai berikut :
a. Daya Nyata
Daya nyata merupakan daya listrik yang digunakan untuk keperluan menggerakkan mesin-mesin listrik atau peralatan lainnya, yang mana dapat ditulis dalam rumusnya yaitu :

Satu fasa

P = V x I x Cos φ

Tiga fasa
P = 1.732 x V x I x Cos φ
Keterangan :

P = Daya Nyata (Watt)

V = Tegangan (Volt)

I = Arus yang mengalir pada penghantar (Amper)
Cos φ = Faktor Daya
baca Selanjutnya...

Dasar Elektro

KUAT ARUS LISTRIK (I)

adalah jumlah muatan listrik yang menembus penampang konduktor tiap satuan waktu.

I = Q/t = n e v A

Q = muatan listrik
n = jumlah elektron/volume
v = kecepatan elektron

RAPAT ARUS (J)
adalah kuat arus per satuan luas penampang.

J = I/A = n e v

e = muatan 1 eleltron = 1,6 x 10E-19
A = luas penampang yang dilalui arus

ARUS/TEGANGAN BOLAK-BALIK

Arus/tegangan bolak-balik adalah arus/tegangan yang besarnya selalu berubah-ubah secara periodik. Simbol tegangan bolak-balik adalah ~ dan dapat diukur dengan Osiloskop (mengukur tegangan maksimumnya).


NILAI EFEKTIF KUAT ARUS/TEGANGAN AC

Nilai efektif kuat arus/tegangan AC adalah arus/tegangan AC yang dianggap setara dengan kuat arus/tegangan AC yang menghasilkan jumlah kalor yang sama ketika melalui suatu penghantar dalam waktu yang sama.

Kuat arus efektif : Ief = Imaks / Ö2

Tegangan efektif : V
ef = Vmaks / Ö2

Besaran yang ditunjukkan oleh voltmeter/amperemeter DC adalah tegangan/kuat arus DC yang sesungguhnya,sedangkan yang ditunjukan oleh voltmeter/amperemeter AC adalah tegangan/kuat arus efektif, bukan tegangan/kuat arus sesungguhnya.

Potensial Dan Energi Listrik

Potensial listrik (V) di titik A karena muatan Q adalah:

V = k Q/R atau V = E R

Jika suatu muatan listrik Q berada di dalam beda potensial V maka muatan listrik tersebut memiliki energi potensial (Ep) sebesar :

Ep = QV

Usaha (W) untuk memindahkan muatan Q dalam medan listrik dari titik A ke titik B adalah :

W = (EP)B - (EP)A VB = potensial di titik B
= Q (VB - VA) VA = potensial di titik A

Potensial listrik, energi potensial listrik dan usaha listrik adalah besaran skalar.

Baca Selanjutnya...